Continuum Mechanical Modeling for Simulation Science

Exercise 03 - Velocity Gradient, Vorticity

Alan Correa

Chair of Methods for Model-Based Development in Computational Engineering

2024-04-24

1 Organization

Notifications

  • Homework 1 has been released on 17.04.2024
    • Deadline for submission on 30.04.2024

2 Lecture Summary

Lecture Summary

Chapter 4: Incompressible Euler

  • 4.1 Derivation
  • 4.2 Decomposition of the velocity field
  • 4.3 Vorticity dynamics
  • 4.4 Irrotational motion and potential flow
  • 4.5 Bernoulli integral
  • 4.6 Bernoulli equation in a rotating reference frame

3 Exercise

Velocity Gradient Decomposition

Given a velocity vector field \(\mathbf{v}\) in \(\mathbb{R}^3\), we have at any point in space

\[ \nabla \mathbf{v} := \mathbf{L} \] referred to as the velocity gradient tensor, which can be further decomposed into a symmetric tensor \[ \dfrac{1}{2} (\mathbf{L} + \mathbf{L}^{T}) := \mathbf{D} \] and a skew symmetric tensor \[ \dfrac{1}{2} (\mathbf{L} - \mathbf{L}^{T}) := \mathbf{W}. \]

Herein, \(\mathbf{D}\) is called the rate of deformation tensor and \(\mathbf{W}\) is called the spin tensor and we have

\[ \mathbf{L} = \mathbf{D} + \mathbf{W} \]

Velocity Gradient Decomposition

The rate of deformation tensor \(\mathbf{D}\) can be further decomposed into a sperical part describing dilatation motion \[ \text{sph}(\mathbf{D}) = \dfrac{1}{3} \text{tr}(\mathbf{D}) \mathbf{I} \]

and a deviatoric part describing shearing motion

\[ \text{dev}(\mathbf{D}) = \mathbf{D} - \text{sph}(\mathbf{D}) \]

Velocity Gradient Decomposition

Ex1

For the given velocity field \(\mathbf{v}\), compute the values of:

  • Velocity Gradient Tensor \(\nabla \mathbf{v}\)
  • Rate of Deformation Tensor \(\mathbf{D}\)
  • Spin Tensor \(\mathbf{W}\)
  • \(\text{sph}(\mathbf{D})\)
  • \(\text{dev}(\mathbf{D})\)

Comment on the significance of the computed values by comparing it to the plot of velocity field.

Velocity Gradient Decomposition

Ex1.a:

\[ \mathbf{v} = \left(\begin{array} \text{a} \\ 0\end{array}\right) \]

Velocity Gradient Decomposition

Ex1.b:

\[ \mathbf{v} = \left(\begin{array} \text{2y} + 10 \\ 0\end{array}\right) \]

Velocity Gradient Decomposition

Ex1.c:

\[ \mathbf{v} = \left(\begin{array} \text{bx} \\ -by\end{array}\right) \]

Velocity Gradient Decomposition

Ex1.d:

\[ \mathbf{v} = \left(\begin{array} \text{cx} \\ cy\end{array}\right) \]

Velocity Gradient Decomposition

Ex1.e:

\[ \mathbf{v} = \left(\begin{array} \text{dy} \\ dx\end{array}\right) \]

Velocity Gradient Decomposition

Ex1.f:

\[ \mathbf{v} = \left(\begin{array} \text{-}fy \\ fx\end{array}\right) \]

Vorticity

Given a velocity vector fielf \(\mathbf{v}\), at any point in space we can calculate

\[ \mathbf{\omega} = \nabla \times \mathbf{v} \] where \(\mathbf{\omega}\) is called the vorticity.

Ex2

For the given velocity field \(\mathbf{v}\), calculate the vorticity field. Interpret the connection of the vorticity field with:

  • the plot of the velocity field
  • the spin tensor \(\mathbf{W}\) calculated in the previous exercise

Vorticity

Ex2.a:

\[ \mathbf{v} = \left(\begin{array} \text{a} \\ 0\end{array}\right) \]

Vorticity

Ex2.b:

\[ \mathbf{v} = \left(\begin{array} \text{2y} + 10 \\ 0\end{array}\right) \]

Vorticity

Ex2.c:

\[ \mathbf{v} = \left(\begin{array} \text{bx} \\ -by\end{array}\right) \]

Vorticity

Ex2.d:

\[ \mathbf{v} = \left(\begin{array} \text{cx} \\ cy\end{array}\right) \]

Vorticity

Ex2.e:

\[ \mathbf{v} = \left(\begin{array} \text{dy} \\ dx\end{array}\right) \]